Bac de maths 2025

Exercice 26 : fonction exponentielle et équation différentielle

Principaux domaines abordés :

Équations différentielles ; fonction exponentielle.

On considère l'équation différentielle (E): $y' = y + 2xe^x$.

On cherche l'ensemble des fonctions définies et dérivables sur l'ensemble $\mathbb R$ des nombres réels qui sont solutions de cette équation.

- **1.** Soit u la fonction définie sur \mathbb{R} par $u(x) = x^2 e^x$. On admet que u est dérivable et on note u' sa fonction dérivée. Démontrer que u est une solution particulière de (E).
- **2.** Soit f une fonction définie et dérivable sur \mathbb{R} . On note g la fonction définie sur \mathbb{R} par :

$$g(x) = f(x) - u(x).$$

a. Démontrer que si la fonction f est solution de l'équation différentielle (E) alors la fonction g est solution de l'équation différentielle : y' = y.

On admet que la réciproque de cette propriété est également vraie.

b. À l'aide de la résolution de l'équation différentielle y' = y, résoudre l'équation différentielle (E).

3. Étude de la fonction *u*

- **a.** Étudier le signe de u'(x) pour x variant dans \mathbb{R} .
- **b.** Dresser le tableau de variations de la fonction u sur \mathbb{R} (les limites ne sont pas demandées).
- **c.** Déterminer le plus grand intervalle sur lequel la fonction u est concave.