Bac de maths 2025

Exercice : logarithme népérien et fonctions

Principaux domaines abordés :

Fonction logarithme; dérivation.

Partie I

On désigne par h la fonction définie sur l'intervalle $]0; +\infty[$ par :

$$h(x) = 1 + \frac{\ln(x)}{x^2}.$$

On admet que la fonction h est dérivable sur $]0; +\infty[$ et on note h' sa fonction dérivée.

- **1.** Déterminez les limites de h en 0 et en $+\infty$.
- **2.** Montrer que, pour tout nombre réel x de $]0; +\infty[$, $h'(x) = \frac{1-2\ln(x)}{x^3}$.
- En déduire les variations de la fonction h sur l'intervalle]0; +∞[.
- **4.** Montrer que l'équation h(x) = 0 admet une solution unique α appartenant à $]0; +\infty[$ et vérifier que : $\frac{1}{2} < \alpha < 1$.
- **5.** Déterminer le signe de h(x) pour x appartenant à $]0; +\infty[$.

Partie II

On désigne par f_1 et f_2 les fonctions définies sur $]0; +\infty[$ par :

$$f_1(x) = x - 1 - \frac{\ln(x)}{x^2}$$
 et $f_2(x) = x - 2 - \frac{2\ln(x)}{x^2}$.

On note \mathcal{C}_1 et \mathcal{C}_2 les représentations graphiques respectives de f_1 et f_2 dans un repère (O ; $\vec{\iota}$, $\vec{\jmath}$).

1. Montrer que, pour tout nombre réel x appartenant à $]0; +\infty[$, on a :

$$f_1(x) - f_2(x) = h(x).$$

2. Déduire des résultats de la **Partie I** la position relative des courbes \mathcal{C}_1 et \mathcal{C}_2 . On justifiera que leur unique point d'intersection a pour coordonnées $(\alpha; \alpha)$. On rappelle que α est l'unique solution de l'équation h(x) = 0.