

Le raisonnement par récurrence

Le raisonnement par récurrence est une technique utilisée en mathématiques pour prouver qu'une affirmation est vraie pour tous les nombres entiers positifs n.

La technique consiste à prouver le cas de base, qui est généralement n=1, puis à prouver que si l'affirmation est vraie pour un certain nombre entier k, elle doit également être vraie pour le nombre entier suivant k+1.

I.Axiome de récurrence

Axiome:

Soit P(n) une propriété dépendant d'un entier naturel n. Si on démontre les deux conditions suivantes :

- **Initialisation** : P(n) est vraie pour un entier n_0 .
- **Hérédité**: pour tout entier naturel $k \ge n_0$, P(n) est vraie alors on peut affirmer que P(n) est vraie pour tout entier $n \ge n_0$.

Remarque:

La propriété P(n) peut être de différentes natures : Une égalité :

$$\forall n \in \mathbb{N}, P(n) : 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}.$$

Une inégalité:

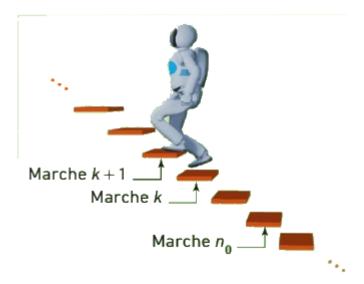
$$\forall x > 0, \forall n \in \mathbb{N}, P(n) : (1+x)^n \ge 1 + nx.$$

Une phrase:

Pour tout entier naturel n, P(n): $\frac{n^3-n}{3}$ est un entier naturel.

Remarque:

On peut illustrer le raisonnement par récurrence par la programmation d'un robot qui doit monter des escaliers.



Si le robot est mis sur une marche n_0 de l'escalier et si le robot sait monter

d'une marche à la marche suivante alors le robot saura monter toutes les marches de l'escalier

à partir de la marche n_0 .

II. Le raisonnement par récurrence et la démonstration

Utiliser le raisonnement par récurrence :

L'**initialisation** est la démonstration que $P(n_0)$ est vraie. L'**hérédité** est une implication à montrer.

On considère un entier $k \geq n_0$ et on suppose que P(k) est vraie.

C'est-à-dire que la propriété est vraie au rang k.

Cela s'appelle l'hypothèse de récurrence.

On démontre que P(k+1) est alors vraie en utilisant l'hypothèse de récurrence.

On aboutit à la conclusion que P(n) est vraie pour tout entier $n \geq n_0$.

Exemple:

On considère la suite numérique (u_n) définie par $u_0=3$ et $\forall\,n\in\mathbb{N},u_{n+1}=\sqrt{u_n+4}.$

Démontrer par récurrence que $\forall n \in \mathbb{N}, u_n \geq 2$.

Initialisation:

 $u_0 = 3 \ge 2$ donc P(0) vraie.

Hérédité:

Supposons qu'il existe un entier k tel que $u_k \geq 2$

$$u_k + 4 \ge 2 + 4$$

Or la fonction racine carrée est croissante sur $[0; +\infty[$.

$$\mathrm{donc}\ \sqrt{u_k+4}\geq\ \sqrt{6}\geq\ \sqrt{4}$$

donc $u_{k+1} \geq 2$ ainsi, P(k+1) est vraie.

La propriété est héréditaire.

Conclusion:

$$\forall n \in \mathbb{N}, u_n \geq 2$$

III. Principe de récurrence et dominos

Conclusion: Tous les dominos vont tomber....