Les équations du second degré

I. Fonction polynôme du second degré

1.Généralités

Définition:

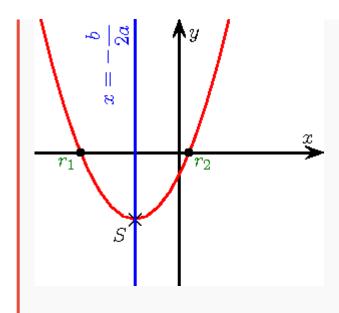
Toute fonction f définie sur $\mathbb R$ par $f(x)=ax^2+bx+c$ avec a,b,c trois nombres réels tel que a soit non nul est appelée **fonction polynôme du second degré** ou, simplement, **trinôme**.

2. Forme canonique

Théorème:

Tout fonction f du second degré définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b,c trois nombres réels tel que a soit non nul peut s'écrire de **façon unique** sous la forme $f(x)=a(x-,\alpha,)^2+\beta$. Cette forme est appelée la **forme canonique** du trinôme.

La courbe représentative de f est appelée la parabole et son équation est $y=ax^2+bx+c$.



Exemple:

Déterminer la forme canonique de la fonction suivante :

$$f(x) = 2x^2 - 4x + 8f(x) = 2(x^2 - 2x + 4)f(x) = 2[(x - 1)^2 - 1 + 4]f(x) = 2[(x - 1)^2 + 3]f(x) = 2(x - 1)^2 + 6(x - 1)^2 + 3(x - 1)$$

Propriété:

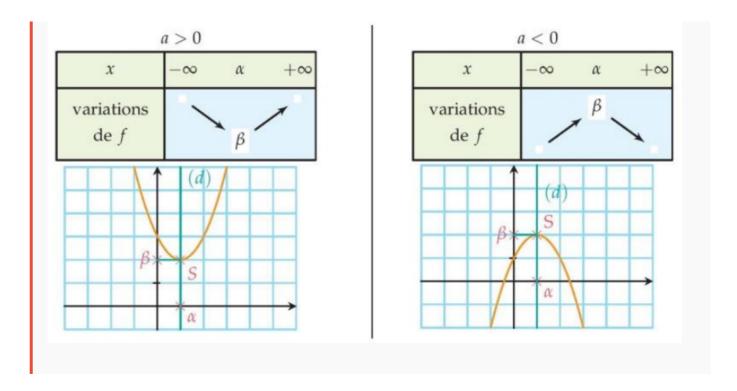
Une parabole de sommet $S(\,\alpha\,,\beta\,)$ est symétrique par rapport à la droite d'équation $x=,\alpha$.

3. Sens de variation d'une fonction

Propriété:

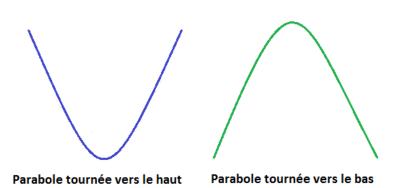
Soit f une fonction du second degré dont la forme canonique est $f(x) = a(x-\alpha)^2 + \beta$.

Le sens de variation de f dépend du signe du nombre a.



Vocabulaire:

- Si a>0, f admet un **minimum** en x=a égal à b que l'on peut traduire par "le sommet de la parabole est en bas" ou par "**f est convexe**".
- Si a<0, f admet un **maximum** en x=a égal à b que l'on peut traduire par "le sommet de la parabole est en haut" ou par "**f est concave**".



II.les équation du second degré et trinôme

1. Résolution d'équations du second degré

Une **équation du second degré** est une équation du type $ax^2 + bx + c = 0$ avec a,b,c trois nombres réels tel que a soit non nul.

Définition : discriminant.

 $\Delta,=b^2-4ac$ est le discriminant du trinôme du second degré ax^2+bx+c .

Vocabulaire:

On appelle **racine** du trinôme du second degré ax^2+bx+c les solutions de l'équation $ax^2+bx+c=0$.

Les solutions de l'équation $f(x) = ax^2 + bx + c = 0$ sont appelées **racines ou zéros** de la fonction f.

Théorème:

Le nombre de solutions de l'équation du second degré $ax^2+bx+c=0~$ dépend du signe de Δ .

Résolution d'une équation du second degré

Calcul de
$$\Delta$$
:
$$\Delta = b^2 - 4ac$$

Déduction de l'ensemble des solutions de l'équation :

En fonction de la valeur de Δ , nous avons 3 cas distincts :

Si
$$\Delta > 0$$
:
L'équation admet deux solutions dans R :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Si
$$\Delta = 0$$
:
L'équation admet une
unique solution dans R :

$$x = \frac{-b}{2a}$$

Si
$$\Delta < 0$$
:

L'équation admet deux solutions dans C :

$$x_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$

2.Le signe du trinôme

	Solutions de l'équation $ax^2 + bx + c = 0$	Signe de $P(x) = ax^2 + bx + c$	Factorisation de $P(x) = ax^2 + bx + c$
Δ> 0	Deux solutions distinctes $x_1 = \frac{-b + \sqrt{\Delta}}{2a} \text{ et } x_2$ $= \frac{-b - \sqrt{\Delta}}{2a}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$P(x) = a(x - x_1)(x - x_2)$
Δ= 0	Une solution double $x_3 = -\frac{b}{2a}$	$ \begin{array}{ c c c c c c } \hline x & -\infty & x_3 & +\infty \\ \hline P(x) & \text{signe de } a & 0 & \text{signe de } a \\ \hline \end{array} $	$P(x) = a(x - x_3)^2$
Δ< 0	Pas de solution	$ \begin{array}{ c c c c }\hline x & -\infty & +\infty \\\hline P(x) & \text{signe de } a \\\hline \end{array} $	Pas de factorisation possible