Produit scalaire dans le plan

I.Définition du produit scalaire et orthogonalité

Définition:

On considère deux vecteurs du plan \vec{u} et \vec{v} .

Le **produit scalaire** de \vec{u} et \vec{v} , noté $\vec{u}.\vec{v}$, est défini par :

$$\vec{u}.\vec{v} = \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2).$$

Remarque:

Le produit scalaire n'est pas un vecteur mais un nombre réel.

Propriétés:

Le produit scalaire est commutatif, c'est à dire que $\vec{u}.\vec{v}=\vec{v}.\vec{u}$.

Si
$$\vec{u} = \vec{0}$$
 ou $\vec{v} = \vec{0}$, alors $\vec{u}.\vec{v} = 0$.

 $\vec{u}.\vec{u}$ est également noté \vec{u}^2 , appelé **carré scalaire** de \vec{u} ;

Nous avons $||\vec{u}||^2 = \vec{u}.\vec{u}$.

Définition:

On considère deux vecteurs non nuls du plan \vec{u} et \vec{v} .

On dit que deux vecteurs \vec{u} et \vec{v} sont **orthogonaux** si, et seulement si, $\vec{u}.\vec{v}=0$.

Remarque:

Le vecteur nul est donc orthogonal à tout vecteur du plan.

Propriété:

On considère deux vecteurs non nuls du plan \vec{u} et \vec{v} .On dit que deux vecteurs \vec{u} et \vec{v} sont **orthogonaux** si, et seulement si, $(\vec{u}; \vec{v}) = \pm \frac{\pi}{2} [2\pi]$.

Propriété:

Deux droites du plan sont perpendiculaires, si, et seulement si, un vecteur directeur de l'une est orthogonal à un vecteur directeur de l'autre.

II. Produit scalaire et coordonnées

Propriété:

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$.Le produit scalaire de \vec{u} et \vec{v} est donné par la formule suivante :

$$\vec{u}.\vec{v} = xx' + yy'.$$

III. Propriétés algébriques du produit scalaire

Propriétés:

- Le produit scalaire est **distributif** par rapport à l'addition : $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- Pour deux réels k et k', $(k\vec{u}).(k'\vec{v}) = kk'\vec{u}.\vec{v}$.
- En particuliers, $(-\vec{u}).\vec{v} = \vec{u}.(-\vec{v}) = -\vec{u}.\vec{v}$.

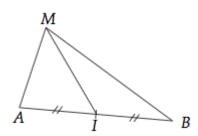
Propriétés : identités remarquables.

- $||\vec{u} + \vec{v}||^2 = (\vec{u} + \vec{v})^2 = ||\vec{u}||^2 + 2\vec{u}.\vec{v} + ||\vec{v}||^2$.
- $||\vec{u} \vec{v}|^2 = (\vec{u} \vec{v})^2 = ||\vec{u}||^2 2\vec{u}.\vec{v} + ||\vec{v}||^2.$
- $(\vec{u} + \vec{v})(\vec{u} \vec{v}) = ||\vec{u}||^2 ||\vec{v}||^2$.

Théorème de la médiane:

Soient A et B deux points distincts du plan et I le milieu de [AB].

Pour tout point M du plan, $MA^2+MB^2=2MI^2+\frac{AB^2}{2}$.



IV. Autres expressions du produit scalaire

Propriétés:

On considère deux vecteurs non nuls du plan \vec{u} et \vec{v} et trois points distincts A,B et C du plan.

- $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}).$
- $\vec{AB}.\vec{AC} = AB \times AC \times \cos(\widehat{BAC})$.

Propriétés:

Si deux vecteurs du plan \vec{u} et \vec{v} sont **colinéaires**, alors :

- $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}||$ si \vec{u} et \vec{v} ont le même sens.
- $\vec{u}.\vec{v} = -||\vec{u}|| \times ||\vec{v}||$ si \vec{u} et \vec{v} ont des sens contraires.