Suites numériques

I.Mode de génération d'une suite numérique

Définition : suite numérique.

Une suite numérique est une fonction de $\mathbb N$ dans $\mathbb R$.L'image de l'entier n par la suite est noté u_n .

On l'appelle terme d'indice n de la suite.

Cette suite est notée (u_n) ou encore, u.

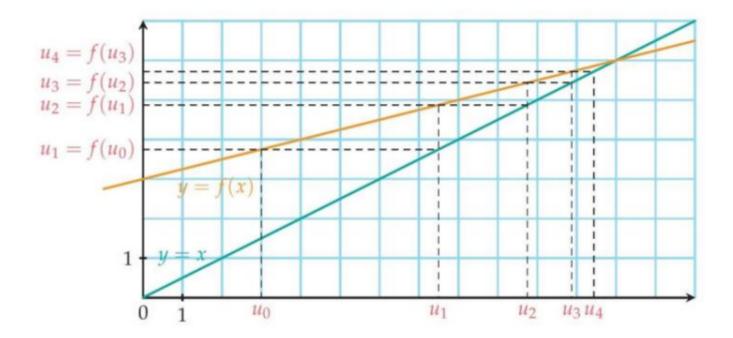
Définition : suite définie par une relation de récurrence.

Définir une suite par une **relation de récurrence**, c'est donner le premier terme de la suiteet une méthode de calcul de u_{n+1} en fonction du terme précédent u_n .

Exemple:

Soit la suite (u_n) définie pour tout entier naturel n par :

$$u_0 = 2$$
 et $u_{n+1} = \frac{1}{2}u_n + 6$.



II.Les suites arithmétiques

Définition:

On dit qu'une suite (u_n) est **arithmétique**, s'il existe un nombre réel r tel que pour tout entier naturel ,on a $u_{n+1}=u_n+r$.

Le réel r est appelé **raison** de la suite arithmétique (u_n) .

Théorème : forme explicite d'une suite arithmétique.

- Si (u_n) est une suite arithmétique de raison r, alors pour tout entier naturel n, on : $u_n=u_0+nr$.
- Si (u_n) est une suite arithmétique de raison r, alors pour tous les entiers naturels n et k avec n>k, on : $u_n=u_k+(n-k)r$.

La somme des n premiers entiers est donnée par : $S_n=0+1+2+...+n=\frac{n(n+1)}{2}$

Propriété: somme des premiers termes.

La somme des n premiers termes d'une suite arithmétiques de raison $r \neq 1$ est donnée $\operatorname{par}: S_n = u_0 + u_1 + u_2 + \ldots + u_n = (n+1) \frac{u_0 + u_n}{2}.$

III.Les suites géométriques

Définition:

On dit qu'une suite (u_n) est **géométrique**, s'il existe un nombre réel q non nul tel que pour tout entier naturel ,on a $u_{n+1}=u_n,\times,q$.

Le réel q est appelé **raison** de la suite géométrique (u_n) .

Théorème : forme explicite d'une suite géométrique.

- Si (u_n) est une suite arithmétique de raison q, alors pour tout entier naturel n, on : $u_n = u_0, \times, q^n$.
- Si (u_n) est une suite arithmétique de raison q, alors pour tous les entiers naturels n et k avec n>k, on : $u_n=u_k, \times, q^{n-k}$.

Propriété : somme des premières puissances.

Pour tout réel q non nul et différent de 1, $\sum_0^n q^k = 1 + q + q^2 + q^3 + \ldots + q^n = \frac{q^{n+1}-1}{q-1}$