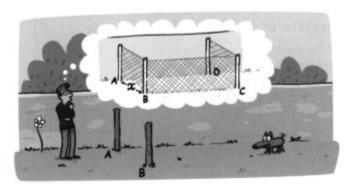
## D.T.L: l'enclos du chien.

Monsieur Maîtrechien veut aménager un enclos rectangulaire pour son chien.


Il dispose de 21 m de grillage qu'il imagine utiliser ainsi :

- le mur du jardin formera un côté de l'enclos ;
- le grillage formera les trois autres côtés.

Pour cela il a placé un premier piquet en A contre le mur.

Il hésite maintenant sur l'emplacement du piquet B.

En effet, il se demande si l'aire de l'enclos est toujours la même quelle que soit la distance AB.



## Partie I

- 1. Faire un schéma en vue de dessus.
- 2. L'aire de l'enclos est-elle toujours la même quelle que soit la distance AB ? Faire un pronostic.
- 3. Vérifier ce pronostic en calculant l'aire pour AB = 2m puis pour AB = 3m.
- 4. Monsieur Maîtrechien veut en savoir plus sur la façon dont varie l'aire en fonction de AB. Pour cela, il note AB = x et il écrit l'aire de l'enclos en fonction de x. Montrer que l'aire de l'enclos en fonction de x est 21x-2x².
- 5. Contrôler si l'expression littérale de la question 4 donne bien l'aire de l'enclos quand x vaut 2m puis quand x vaut 3m.

## Partie II

Monsieur Maîtrechien veut que son chien ait le plus de place possible. Il a utilisé un tableur-grapheur pour faire afficher sur la première ligne des valeurs de x et sur la deuxième les valeurs correspondantes de l'aire. Une valeur est effacée.

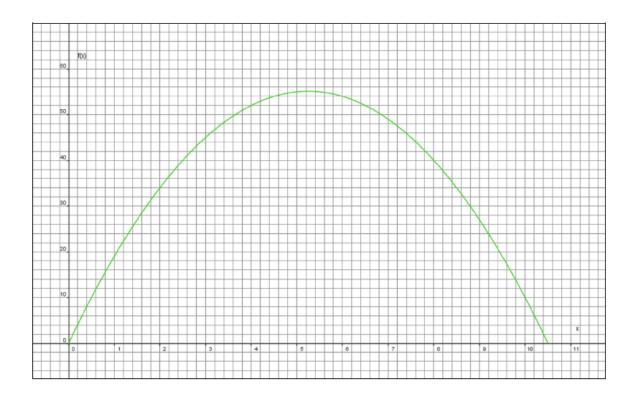
| X    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8 | 9  | 10 |
|------|----|----|----|----|----|----|----|---|----|----|
| f(x) | 19 | 34 | 45 | 52 | 55 | 54 | 49 |   | 27 | 10 |

1. Utiliser les valeurs indiquées par le tableur pour compléter:

$$f(4) = ...$$
 et  $f(...) = 55$ .

L'image de 6 est .... L'antécédent de 49 est ...

- 2. Calculer la valeur de l'aire pour x = 8.
- 3. Quelle est la valeur maximale de l'aire lue dans le tableau?
- 4. Pour quelle valeur de x est-elle trouvée?
- 5. Est-on sûr que c'est la plus grande valeur possible de l'aire, quelle que soit la valeur de x?


## Partie III

Monsieur Maîtrechien a fait afficher, à l'aide du tableur, la courbe représentant la fonction f qui à x fait correspondre l'aire de l'enclos.

$$f: x \to 21x - x^2$$

Rappel : une lecture graphique doit être accompagnée d'un tracé sur le graphique.

- 1. Lire sur le graphique et compléter: f(2,5) = ... f(...) = 34
- 2. Lire sur le graphique l'image de 3,3 puis le(s) antécédent(s) de 45.
- 3. Lire sur le graphique quelle semble être la valeur maximum de l'aire.
- 4. Déterminer graphiquement l'aire maximale de l'enclos puis la largeur de l'enclos pour laquelle l'aire maximale est atteinte.
- 5. Représenter à l'échelle 1/100 l'enclos ayant l'aire maximale.

