Fonction exponentielle : cours de maths en terminale à imprimer en PDF.

webmaster
15 mars 2025

La fonction exponentielle à travers un cours de maths en terminale complet. Vous devrez connaître l’ensemble de définition de cette fonction ainsi que sa dérivée. Appliquer les différentes formulés de calculs et savoir calculer des limites en un point ou en l’infini. Étudiez la courbe et son sens de variation afin de pouvoir la tracer en terminale.

I.La fonction exponentielle

Lemme :
Si il existe une fonction f dérivable sur \mathbb{R} telle que f'=fet f(0)=1 alors f ne s’annule pas sur \mathbb{R}.
Théorème :
Il existe une unique fonction f dérivable sur telle que f'=f et f(0)=1.
Définition :

On appelle fonction exponentielle, notée exp, l’unique fonction dérivable sur R et telle que f'=f et f(0)=1.Nous noterons cette fonction définie par f(x)=e^x et e^0=1.

II.Les propriétés de la fonction exponentielle

Théorème :

On considère deux nombres réels x et y.Nous avons e^{x+y}=e^xe^y.

Exemple :

e^{5+2}=e^5e^2

Propriétés :

On considère deux nombres réels x et y et n un entier naturel.Nous avons les propriétés suivantes :

  • e^{-x}=\frac{1}{e^x};
  • e^{x-y}=\frac{e^x}{e^y};
  • e^{nx}=(e^x)^n

Exemple :

e^{-2}=\frac{1}{e^2}

\frac{e^7}{e^5}=e^{7-5}=e^2

III.Etude de la fonction exponentielle

1.Le signe et ses variations

Propriété :

On considère la fonction définie et dérivable sur \mathbb{R} par f(x)=e^x.

  • f est continue sur \mathbb{R};
  • f est strictement positive sur \mathbb{R};
  • f est strictement croissante sur \mathbb{R}.

2.Les limites en l’infini

Propriété :

On considère la fonction définie et dérivable sur \mathbb{R} par f(x)=e^x.

Nous avons \lim_{x\rightarrow +\infty}f(x)=+\infty et \lim_{x\rightarrow -\infty}f(x)=0^+.

3.Tableau de variation et courbe représentative

Propriété :

On considère la fonction définie et dérivable sur \mathbb{R} par f(x)=e^x.

tableau variations exponentielle

courbe exponentielle

Remarques :

La droite d’équation y=0 est une asymptote horizontale à la courbe de la fonction exponentielle en -\infty.

La droite d’équation y=x+1st une asymptote oblique à la courbe de la fonction exponentielle en 0.

3.Equations et inéquations

Propriété :

On considère deux nombres réels x et y.e^x=e^y\Leftrightarrow x=y

x<y\Leftrightarrow e^x<e^y

 

 

Limites et continuité de fonctions : cours de maths en terminale à imprimer en PDF.

La limite d’une fonction dans un cours de maths en terminale, l’élève devra connaître toutes les règles de calculs sur les limites et savoir se débarrasser d’une forme indéterminée. C’est un concept fondamental qui décrit le comportement d’une fonction lorsque les valeurs d’entrée se rapprochent de plus en plus d’un certain point ou d’une certaine […]

Produit scalaire dans l'espace : cours de maths en terminale à imprimer en PDF.

Le produit scalaire dans l’espace à travers un cours de maths en terminale  complet à télécharger en PDF. Vous devrez connaître les propriétés de linéarité et de symétrie du produit scalaire. Pouvoir déterminer si deux vecteurs sont colinéaires ou orthogonaux puis, déterminer l’équation d’une droite ou d’un plan connaissant un vecteur directeur ou un vecteur […]

Fonctions cosinus et sinus : cours de maths en terminale à imprimer en PDF.

Les fonctions cosinus (cos) et sinus (sin) à travers un cours de maths en terminale complet. L’élève devra être capable de déterminer l’ensemble de définition de ces fonctions mais également, justifier si elle est périodique. Connaître et savoir appliquer les différentes formulés et étudier la parité paire ou impaire) en terminale. I.Définitions et rappels On […]

Notez Maths PDF !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager