cours quatrieme

Fractions avec un cours sur l’addition, la soustraction, la multiplication et la division en 4ème.

Les fractions sont un concept fondamental en mathématiques et ont de nombreuses applications importantes. Voici quelques-unes des principales utilisations :

Représentation des parties d’un tout : Elles sont utilisées pour représenter les parties d’un tout ou d’un groupe. Par exemple, si une pizza est divisée en 8 parts égales, chaque part représente 1/8 de la pizza entière.

Opérations arithmétiques : Elles sont utilisées dans les opérations arithmétiques telles que l’addition, la soustraction, la multiplication et la division. Par exemple, lors de l’addition ou de la soustraction, nous devons trouver un dénominateur commun pour rendre les fractions équivalentes avant de pouvoir les ajouter ou les soustraire.

I. Addition et soustraction:

1. Cas où le dénominateur est le même :

Règle 1 :

Pour additionner (ou soustraire) deux fractions ayant le même dénominateur, il faut :

  • conserver le dénominateur en commun;
  • additionner ( ou soustraire) les numérateurs.

On considère a,b et c trois nombres relatifs tels que b\neq\,0 .

\frac{a}{b}+\,\frac{c}{b}=\frac{a+c}{b}  et \frac{a}{b}-\frac{c}{b}=\frac{a-c}{b}

Exemples :

Calculer.

\frac{5}{3}+\frac{8}{3}=\frac{5+8}{3}=\frac{13}{3}

\frac{5}{3}-\,\frac{8}{3}=\frac{5-8}{3}=\frac{-3}{3}=-1

2. Cas où le dénominateur est différent :

Règle 2 :

Pour additionner (ou soustraire) deux fractions n’ayant pas le même dénominateur, il faut :

  • réduire ces fractions au même dénominateur;
  • appliquer la règle précédente.

On considère a, b, c et d quatre nombres relatifs tels que b\neq\,0 et d\neq\,0

\frac{a}{b}+\,\frac{c}{d}=\frac{\,a\times  \,d+b\times  \,c}{b\times  \,d} et \frac{a}{b}-\,\frac{c}{d}=\frac{\,a\times  \,d-b\times  \,c}{b\times  \,d}

Exemple :

Calculer

A=\frac{7}{5}+\frac{8}{3}\\A=\frac{7\times  \,3}{5\times  \,3}+\frac{8\times  \,5}{3\times  \,5}\\A=\frac{21}{15}+\frac{40}{15}\\A=\frac{21+40}{15}\,\\A=\frac{61}{15}

B=\frac{7}{5}-\frac{8}{3}\\B=\frac{7\times  \,3}{5\times  \,3}-\frac{8\times  \,5}{3\times  \,5}\\B=\frac{21}{15}-\frac{40}{15}\\B=\frac{21-40}{15}\,\\B=-\frac{19}{15}

II. Multiplication :

Propriété :

Pour effectuer le produit de deux fractions, il faut :

  • multiplier les numérateurs entre eux;
  • multiplier les dénominateurs entre eux.

On considère quatre nombres relatifs a, b, c et d tels que b\neq\,0 et d\neq\,0.

\frac{a}{b}\,\times  \,\frac{c}{d}=\frac{a\,\times  \,c}{b\,\times  \,d} .

Exemples :

Calculer

A=\frac{3}{5}\times  \,\frac{4}{7}=\frac{3\times  \,4}{5\times  \,7}=\frac{12}{35}

B=\frac{-2}{3}\times  \,\frac{-5}{-4}=-\frac{2\times  \,5}{3\times  \,4}=-\frac{10}{12}=-\frac{10: \,2}{12\,: \,2}=-\frac{5}{6}

III. Division:

Définition :
Soit x un nombre relatif non nul.
L’inverse de x est   \frac{1}{x}.
Propriété :

Diviser par un nombre non nul, c’est multiplier par son inverse.

On considère a, b, c et d quatre nombres relatifs avec b\neq\,0 , c\neq\,0 et d\,\neq\,0.

\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b}\times  \,\frac{d}{c}

Exemples :

Diviser par \frac{1}{2}, c’est multiplier par son inverse qui est \frac{2}{1}=2.

\frac{\frac{5}{4}}{\frac{7}{3}}=\frac{5}{4}\times  \,\frac{3}{7}=\frac{5\times  \,3}{4\times  \,7}=\frac{15}{28}

\frac{\frac{-7}{4}}{\frac{-2}{5}}=\frac{-7}{4}\times  \,\frac{5}{-2}=\frac{-7\times  \,5}{4\times  \,(-2)}=\frac{-35}{-8}=\frac{35}{8}

IV. Carte mentale sur les fractions :

carte mentale opérations sur les fractions

4.6/5 - (1316 votes)
Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «fractions avec un cours sur l’addition, la soustraction, la multiplication et la division en 4ème.» au format PDF afin de pouvoir travailler en totale autonomie.


Les exercices les plus consultés


Nombre de fichiers PDF téléchargés.  Maths PDF c'est 10 227 538 cours et exercices de maths téléchargés en PDF et 3 936 exercices.