cours terminale

Produit scalaire dans l’espace : cours de maths en terminale S

I.le produit scalaire dans l’espace

1.Approche géométrique du produit scalaire

Définition :

Soient  \vec{u} et \vec{v} deux vecteurs de l’espace, et A,B,C trois points tels que \vec{u}=\vec{AB} et \vec{v}=\vec{AC}.Il existe au moins un plan P contenant les point A, B et C.

On appelle produit scalaire de \vec{u} et \vec{v} , le produit scalaire \vec{AB}.\vec{AC} calculé dans le plan P.

Ainsi :

Si u et v sont non nuls, \vec{u}.\vec{v}=AB\times AC\times cos(\widehat{BAC});

Si u=0 ou v=0, le produit scalaire de u et v est nul : \vec{u}.\vec{0}=0 et \vec{0}.\vec{v}=0.

Exemple :

ABCDEFGH est un cube d’arête a.

Soit \vec{u}=\vec{BF} et \vec{v}=\vec{AH}=\vec{BG}.

\vec{u}.\vec{v}=\vec{BF}.\vec{AH}=\vec{BF}.\vec{BG}=BF\times BG\times cos(\widehat{FBG})

donc \vec{u}.\vec{v}=a\times a\sqrt{2}\times cos(\frac{\pi}{4})=a\times a\sqrt{2}\times \frac{\sqrt{2}}{2}=a^2

produit scalaire

Propriété:

Si \vec{u} et \vec{v} sont deux vecteurs non nuls tels que \vec{u}=\vec{AB} et \vec{v}=\vec{AC}, alors :\vec{u}.\vec{v}=\vec{AB}. \vec{AC}=\vec{AB}. \vec{AH}=\vec{AK}. \vec{AC}

où H est le projeté orthogonal de C sur la droite (AB) et K est le projeté orthogonal de B sur la droite (AC) .

Si \vec{u} ,\vec{v} et \vec{w} sont trois vecteurs de l’espace et k un nombre réel alors :

  • \vec{u}.(\vec{v}+\vec{w})=\vec{u}.\vec{v}+\vec{u}.\vec{w}
  • \vec{u}.\vec{v}=\vec{v}.\vec{u}
  • (k\vec{u}).\vec{v}=\vec{u}.(k\vec{v})=k(\vec{u}.\vec{v)}

2.Caractérisation vectorielle de l’orthogonalité

Définition :

Deux vecteurs non nuls sont orthogonaux si, et seulement s’ils dirigent des droites orthogonales.Le vecteur nul est orthogonal à tous les vecteurs de l’espace.

Propriété :

Deux vecteurs  \vec{u} et \vec{v} sont orthogonaux si, et seulement si, \vec{u}.\vec{v}=0.

3.Expression analytique du produit scalaire

Propriété :

Dans un repère orthonormé (O,i,j,k) de l’espace, on considère les vecteurs \vec{u} et \vec{v} de coordonnées respectives (x,y,z) et (x’,y’,z’),Nous avons \vec{u}.\vec{v}=xx'+yy'+zz'.

En particuliers, \vec{u}.\vec{u}=x^2 +y^2 +z^2 et  \|\vec{u} \|=\sqrt{\vec{u}.\vec{u}}=\sqrt{x^2 +y^2 +z^2}.

II.Applications du produit scalaire

1.Vecteur normal à un plan

Définition :

Un vecteur \vec{n} non nul est dit orthogonal à un plan si ce vecteur est un vecteur directeur d’une droite orthogonale à ce plan.Ce vecteur est alors appelé vecteur normal au plan.

Théorème :

Une droite (d) est orthogonale à toute droite d’un plan P si, et seulement si, elle est orthogonale à deux droites sécantes  (d_1) et (d_2) de ce plan. vecteur normal plan

2.Equation cartésienne d’un plan

Propriété :

Soit un vecteur \vec{n} non nul et A un point de l’espace.L’unique plan P passant par A  et de vecteur normal \vec{n} est l’ensemble des points M de l’espace tels que :

\vec{AM}.\vec{n}=0.

Propriété :

Dans un repère orthonormé, un plan P de vecteur normal \vec{n}(a,b,c) a une équation de la forme ax+by+cz+d=0.Réciproquement, si a,b et c ne sont pas tous les trois nuls, l’ensemble (E) des points M(x,y,z)   tels que

ax+by+cz+d=0 est un plan de vecteur normal \vec{n}(a,b,c).


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «produit scalaire dans l'espace : cours de maths en terminale S» au format PDF afin de pouvoir travailler en totale autonomie.


Les fiches d'exercices les plus consultées

Des cours et exercices en terminale expliqués en vidéos en terminale



Rejoignez-nous sur notre chaîne YouTube



Concours : gagnez une calculatrice Texas Instrument (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


concours texas instrument Je participe au concours afin de gagner la calculatrice.

Inscription gratuite à Maths PDF.  Maths PDF c'est 1 462 972 cours et exercices de maths téléchargés en PDF et 2 390 exercices.

Maths PDF

GRATUIT
VOIR