Sommaire
Avant d’aborder cette leçon, il faut avoir acquis le contenu du cours sur les équations de l’année précédente.
I.Les équations du premier degré à une inconnue :
Soient a,b et c trois nombres relatifs tel que .
- On appelle équation du premier degré à une inconnue toute égalité qui peut se ramener à cette forme :
.
- La lettre x est appelée inconnue de l’équation.
- Résoudre une équation, c’est trouver toutes les valeurs de x qui vérifient l’égalité.
- Toute valeur de x qui vérifie l’égalité est appelé solution de l’équation.
- L’expression ax+b est appelée premier membre de l’équation.
- L’expression c est appelée second membre de l’équation.
Soient a et b deux nombres relatifs. La solution de l’équation est
.
Soient a et b deux nombres relatifs tel que .La solution de l’équation
est
.
Exemple :
Résoudre l’équation suivante :
II. Les inéquations du premier degré à une inconnue :
Soient a, b et c trois nombres relatifs tel que .
- On appelle inéquation du premier degré à une inconnue toute inégalité qui peut se ramener à cette forme :
.
- La lettre x est appelée inconnue de l’inéquation.
- Résoudre une inéquation, c’est trouver toutes les valeurs de x qui vérifient l’inégalité.
- Toute valeur de x qui vérifie l’inégalité est appelé solution de l’inéquation.
- L’expression ax+b est appelée premier membre de l’inéquation.
- L’expression c est appelée second membre de l’inéquation.
Soient a et b deux nombres relatifs. Les solutions de l’inéquation sont
.
Soient a et b deux nombres relatifs tel que .Les solutions de l’inéquation
sont :
si
.
si
.
Exemples :
Résoudre les inéquation suivantes :
III. Les équations-produits :
Un produit de facteurs est nul si et seulement si, un des facteurs, au moins, est nul.
équivaut à
ou
.
Exemple :
Résoudre l’équation-produit suivante :
Un produit de facteurs est nul si et seulement si, un des facteurs, au moins, est nul.
Par conséquent, nous avons :
ou
IV.Les équations du type x²=a :
Les solutions de x²=a sont :
et
si
- 0 si a = 0;
- ensemble vide si
Exemples :
Résoudre les équations suivantes :
a.
36>0 donc il y a deux solutions qui sont :
et
L’ensemble solution est .
b.
-15<0 donc il y a aucune solution, ou encore, le carré d’un nombre est toujours positif ou nul.
L’ensemble solution est .
V.Carte mentale sur les équations et inéquations :
Télécharger puis imprimer cette fiche en PDF
Télécharger ou imprimer cette fiche «les équations et inéquations : cours de maths en 3ème à télécharger en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.
D'autres articles similaires à les équations et inéquations : cours de maths en 3ème à télécharger en PDF.
- 81
- 69
- 69
Le nombre d'exercices par niveau :
- Il y a 267 exercices en CM1.
- Il y a 305 exercices en CM2.
- Il y a 541 exercices en sixième et 14 cours en 6ème.
- Il y a 437 exercices en cinquième et 11 cours en 5ème.
- Il y a 451 exercices en quatrième et 11 cours en 4ème.
- Il y a 639 exercices en troisième et 11 cours en 3ème.
- Il y a 443 exercices en seconde et 15 cours en 2de.
- Il y a 384 exercices en première et 8 cours en 1ère.
- Il y a 469 exercices en terminale et 8 cours en terminale.
- Exercices de maths en terminale à télécharger en PDF.
- Maths avec cours et exercices à télécharger en PDF
- Accueil
- 6ème
- 5ème
Maths PDF c'est 8 488 259 cours et exercices de maths téléchargés en PDF et 3 936 exercices.